当前位置: 学院首页 > 教师风采 > 材料物理与化学系 > 教授 > 正文

段宗范

【来源: | 发布日期:2024-09-14 】

一.基本情况

姓名:段宗范

出生年月:1979年8月

学历:博士

职称:教授

毕业院校:日本大学

办公室:学科1-608

Emial:duanzf@xaut.edu.cn

.学习工作情况

2018.12-----至今:西安理工大学,材料科学与工程学院,教授

2012.12-----2018.11:西安理工大学,材料科学与工程学院,副教授

2012.12-----2015.12:西安理工大学,材料科学与工程博士后流动站,博士后

2009.04-----2012.03:日本大学,理工学部,精密机械工学科,工学博士

2008.10-----2009.03:日本大学,理工学部,访问研究员

2007.12-----2008.09:西安理工大学,材料科学与工程学院,讲师

2005.07-----2007.11:西安理工大学,材料科学与工程学院,助教

.研究方向

[1]磁电复合薄膜材料

[2]超润湿材料及雾气收集

[3]油水分离环保材料

[4]薄膜微细加工及光催化

[5]有机半导体材料及微器件

.获奖及荣誉情况

[1] 2008.10至2012.03获日本政府国费奖学金;

[2] 2013.07入选校优秀青年教师培养计划;

[3]钇钡铜氧薄膜及其多层异质外延结构的制备与性能研究,陕西高等学校科学技术奖,一等奖(2016年);

[4]2019年陕西省新时代模范农工党员

[5]2020年入选江苏省泰州市“双创人才”

[6] 2023年入选咸阳市“创新创业人才”

[7] 2024年入选西安市“科技领军人才”

[8] 2024年入选西安市西咸新区“秦创原创新人才

.科研项目

[1]国家自然科学基金(61404107),主持;

[2]中国博士后基金(2013M542368),主持;

[3]教育部留学回国人员基金,主持;

[4]陕西省自然科学基金(2018JM5019),主持;

[5]陕西省重点研发计划(2023GXLH-046),主持;

[6]陕西省重点实验室科学研究计划(14JS066),主持;

[7]四川省腐蚀与防护重点实验室基金(2016CL09),主持;

[8]四川省腐蚀与防护重点实验室基金(2019CL12),主持;

[9]四川省腐蚀与防护重点实验室基金(2021CL06),主持;

[10]陕西省教育厅科技研究项目(2013JK0676),主持;

[11]校科技创新计划项目(2014.01----2014.12),主持;

[12]博士教师启动基金(2012.07----2015.06),主持;

[13]国家自然科学基金(51372198),参与;

[14]国家自然科学基金(51672212),参与;

[15]陕西省国际合作科技计划(2013KW14-01),参与;

[16]企业委托横向课题多项。

.科技成果转化

一种二氧化钛超疏水薄膜的制备方法、一种非晶SiO2陶瓷包覆聚酯纤维吸油材料的制备方法等9项专利技术获成果转化(技术转让费:50万):开发的高性能吸油棉油水分离材料已通过产品质量认证(行业标准:JT/T560-2004),实现产业化并落地西咸新区“秦创原”。

.其它科研相关活动

担任国家自然科学基金项目函评专家,Inorganic Chemistry、Journal of Materials Science、Applied Surface Science、Ceramics International等SCI著名期刊审稿人。指导国家级大学生创新创业项目3项、省级创新创业项目3项。指导互联网+大学生创新创业项目获陕西省金、银奖各1项。

.科研论文

[61].Mechanism insight into oxygen vacancy-dependent effect in Fe1/TiO2 single-atom catalyst for highly enhanced photo-Fenton mineralization of phenol,Applied Catalysis B: Environment and Energy, 2024,124071(SCI).

[60].Enhanced electromagnetic tunability of barium strontium titanate films via coating Pr modified yttrium iron garnet layer,Journal of Materials Science & Technology,2024, 202, 174-182(SCI).

[59].Designing a periodic structure with a composition gradient stack unit to realize a good comprehensive dielectric property of Yttrium iron garnet multilayer film,ACS Applied Materials & Interfaces,2023, 15, 49826-49834(SCI).

[58].Structural distortion induced enhancement of magnetic and dielectric properties in Pr modified yttrium iron garnet films,Ceramics International, 2023, 49, 10129-10138(SCI).

[57].Synthesis and characterization of new donor-acceptor oligothiophene derivative with pyrido[1,2,5]thiadiazole as electron accepting unit,Journal of Molecular Structure,2023, 1284,135418(SCI).

[56].Achieving high breakdown strength and figure of merit of Ba0.6Sr0.4TiO3films through coating a Y3Fe5O12layer,Journal of the European Ceramic Society, 2022, 42, 4926-4933(SCI).

[55].A novel donor‐acceptor thiophene‐containing oligomer comprising dibenzothiophene‐S,S‐dioxide Units for solution‐processable organic field effect transistor,Molecules, 2022, 27, 2938(SCI).

[54].Enhanced visible-light catalytic activity of micro-patterned ZnFe2O4/Fe3+-TiO2heterojunction composite thin films prepared byphotolithography-assisted chemical solution deposition,Materials Research Bulletin, 2022,155,111951(SCI).

[53].A novel donor‐acceptor thiophene‐containing oligomer comprising dibenzothiophene‐S,S‐dioxide Units for solution‐processable organic field effect transistor,Molecules, 2022,27,2938(SCI).

[52].Enhanced multiferroic properties of Bi4Ti3-xCoxO12/La0.67Sr0.33MnO3layered composite thin films,Ceramics International,2022,48,21728(SCI).

[51].Achieving high breakdown strength and figure of merit of Ba0.6Sr0.4TiO3films through coating a Y3Fe5O12layer,Journal of the European Ceramic Society, 2022, 42, 4926-4933 (SCI).

[50].High tunability and low loss via establishing an internal electric field inLiFe5O8/Ba0.6Sr0.4TiO3composite films using chemical solutiondeposition method,Applied Surface Science, 2022, 590,153112(SCI).

[49].Micro-patterned NiFe2O4/Fe-TiO2composite films: fabrication, hydrophilicity and application in visible-light-driven photocatalysis,Ceramics International,2020, 46, 27080-27091.(SCI)

[48].Fabrication of micro-patterned ZrO2/TiO2composite surfaces with tunable super-wettability via a photosensitive sol-gel technique,Applied Surface Science, 2020, 529, 147136 (SCI).

[47]. Annealing heating rate dependence of microstructure and multiferroic properties in Bi4Ti2.9Fe0.1O12/CoFe2O4layered magnetoelectric composite films prepared by chemical solution deposition method,Ceramics International, 2020,46,15654-15664(SCI).

[46]Enhanced superconducting performance in solution-derived YBCO-BaZrO3composite film,Progress in Natural Science: Materials International, 2020,30,180(SCI).

[45]. Magnetoelectric composite films of La0.67Sr0.33MnO3and Fe-substitutedBi4Ti3O12fabricated by chemical solution deposition.Applied Surface Science, 2019,491, 225-235(SCI).

[44]. Enhanced electrochromic performances andpatterning of Ni–Sn oxide films prepared bya photosensitive sol-gel method.Journal ofMaterials Chemistry C, 2019,9, 650(SCI).

[43].Enhanced flux-pinning performance of YBCO films derived from a fluorine-free sol-gel process with ceria addition,Ceramics International, 2019, 4, 2657-2661(SCI).

[42]. Preparation of Micro-Patterned CaMn7O12CeramicFilms via a Photosensitive Sol-Gel Method.Coatings, 2019,452,165-173(SCI).

[41]. Facile micro-patterning of ferromagnetic CoFe2O4films using a combinedapproach of sol-gel method and UV irradiation.Ceramics International, 2019,45, 369-377(SCI).

[40]. Preparation of epitaxial CaMn7O12film via sol-gel method and itsferromagnetic properties.Journal of Sol-Gel Science and Technology, 2018,88, 639-645(SCI).

[39].Dielectric and energy storage properties of SrTiO3and SrZrO3modified Bi0.5Na0.5TiO3-Sr0.8Bi0.1TiO3based ceramics,Journal of Alloys and Compounds, 2018,742,683-689(SCI).

[38]. Non-UV activated superhydrophilicity of patterned Fe-doped TiO2film for anti-fogging and photocatalysis.Applied Surface Science, 2018,452,165-173(SCI).

[37]. Growth and characterization of Bi3.15Nd0.85Ti2.95Hf0.05O12/La0.67Sr0.33MnO3composite film with strong magnetoelectric effect by chemical solution deposition under moderate crystallization temperature.Journal of Alloys and Compounds, 2018,754,190-198(SCI).

[36]. Growth of highly c-axis oriented LaNiO3films with improved surface morphology on Si substrate using chemical solution deposition and rapid heat treatment process.Ceramics International, 2018,44, 695-702(SCI).

[35]. Integration of c-axis oriented Bi3.15Nd0.85Ti2.95Hf0.05O12/La0.67Sr0.33MnO3ferromagnetic-ferroelectric composite film on Si substrate.Scientific Reports,2017,7, 11341(SCI).

[34]. Patterning ZrO2films surface: Superhydrophilic and superhydrophobic properties.Ceramics International, 2017, 43, 5089-5094(SCI).

[33]. Ferromagnetic, ferroelectric and magnetoelectric properties of (001)-oriented Pb(Zr0.52Ti0.48)O3/La0.67Sr0.33MnO3composite films deposited on Si substrates using chemical solution deposition.Journal of Alloys and Compounds, 2017, 698, 276-283(SCI).

[32].Preparation of YBa2Cu3O7-x/Y2O3/YBa2Cu3O7-xtrilayer films using Sol-Gel Method.Journal of Superconductivity and Novel Magnetism, 2017,30, 1719-1725(SCI).

[31]. A facial approach combining photosensitive sol-gel with self-assembly method to fabricate superhydrophobic TiO2films with patterned surface structure.Applied Surface Science, 2016, 360:1030-1035(SCI).

[30].Facile fabrication of micro-patterned LSMO films with unchanged magnetic properties by photosensitive sol-gel method on LaAlO3substrates.Ceramics International, 2016, 42, 14100-14106(SCI).

[29]. Peparation of LSMO/PLZT composite film by sol-gel technique and its ferroelectric and ferromagnetic properties.Materials Science Forum, 2015, 815, 166-170 (EI).

[28]. Phenylene-thiophene oligomer derivatives for thin-film transistors:structure and semiconductor performances.Japanese Journal of Applied Physics, 2013, 52, 03BB07(1-5) (SCI).

[27].Flexible Organic Solar Cells Based on Spin-Coated Blend Films of a Phenylene-Thiophene Oligomer Derivative and PCBM.Molecular Crystals and Liquid Crystals, 2013, 578, 78-87 (SCI).

[26]. Novel Phenylene–thiophene oligomer derivatives with dibenzothiophene 5,5-dioxide core: synthesis, characterization, and applications in organic solar cells.Chemistry Letters, 2012, 41, 363-365, (SCI).

[25].Yasushiro Nishioka. Organic field-effect transistors based on two phenylene-thiophene oligomer derivatives with a biphenyl or fluorene core.Synthetic Metals, 2012, 162, 1292-1298 (SCI).

[24].Novel thienyl-dibenzothiophene oligomers end-capped by hexylphenyl groups as potentially organic semiconductor materials.Molecular Crystals and Liquid Crystals, 2012, 567, 28-33 (SCI).

[23]. Organic field-effect transistors based on 3,7-bis[5-(4-n-hexylphenyl) -2-thienyl]dibenzothiophene oligomer.Active-Matrix Flatpanel Displays and Devices, 2012, 12, 195-198 (EI).

[22]. Synthesis and characterization of novel pyrene derivatives containing thienyl groups.Molecular Crystals and Liquid Crystals, 2011, 538, 199-207 (SCI).

[20]. A novel thiophene-fused polycyclic aromatic with a tetracene core: synthesis, characterization, optical and electrochemical properties.Molecules, 2011, 16, 4467-4481 (SCI).

[20].Facile synthesis and characterization of a novel thiophene-fused polycyclic aromatics based on pyrene.Chinese Chemical Letters,2011, 22, 819-822 (SCI).

[19]. Preparation of Co-Na heterobinuclear polymeric complex of Salen-Crown ether and its catalytic activation for molecular oxygen.Journal of Macromolecular Science:Part A-Pure and Applied Chemistry, 2005, 42, 231-235(SCI).

[18].Heterogeneous catalytic aerobic oxidation behavior of Co–Na heterodinuclear polymeric complex of Salen-crown ether.Journal of Molecular Catalysis A: Chemical, 2006, 260, 280-287(SCI).

[17].高分子担载水杨醛希夫碱钴配合物催化分子氧氧化环己烯性能研究,分子催化,2005, 19,383-387。

[16]. Synthesis of novel thiophene-phenylene oligomer derivatives with a dibenzothiophene-5,5-dioxide core for use in organic solar cells.Physica Status Solidi B, 2012, 249, 2648-2651 (SCI).

[15].Bulk-heterojunction solar cells based on mixed donors of P3HT and phenylene–thiophene oligomer derivative,ECS Transactions, 2013, 58, 3-10 (EI).

[14]. Polypyrrole actuator operating characteristicsin electrolyte solution mixed with methanol,Applied Mechanics and Materials, 2013, 300-301, 933-936 (EI).

[13].Bulk-Heterojunction Organic Solar Cells Based on Phenylene-Thiophene Oligomer and Phenyl-C61-butyric-acid Methyl Ester,IEICE Transaction on Electronics,2014, E97-C, 405-408(SCI).

[12]. Preparation of ITO Films Using a Spray Pyrolysis Solution Containing an Acetylacetone Chelating Agent,Materials Science-Poland, 2014, 32, 66-70(SCI).

[11].Influence of Electrochemical Actuations on Mechanical Properties of PPy Actuators in Electrolyte Solutions Mixed with 2-propanol or Methanol.Molecular Crystals and Liquid Crystals, 2012, 566, 165-169 (SCI).

[10]. Characterization of pyrrole copolymer soft actuators prepared by electrochemical polymerization pyrrole and diethyl 3,4-pyrroledicarboxylate.Molecular Crystals and Liquid Crystals, 2012, 566, 158-154 (SCI).

[9].Flexible Transistors with Low Temperature Curable Polyimide Gate Insulator,Journal of Photopolymer Science and Technology,2012, 25, 381-384 (SCI).

[8].Gamma-ray Irradiated Organic Thin Film Transistors Based on Perfluoropentacene with Polyimide Gate Insulator,Journal of Photopolymer Science and Technology,2012, 25, 493-496 (SCI).

[7].Dynamic behaviors of polypyrrole actuators in electrolyte solution mixed with 2-propanol.Molecular Crystals and Liquid Crystals, 2011, 539, 166-173 (SCI).

[6].Effect of 2-propanol concentration in electrolyte solution on polypyrrole actuator performance.Japanese Journal of Applied Physics,2011, 50, 01BG10(1-4) (SCI).

[5].Comparison of polypyrrole organic thin film actuators with or without silicon microspring.Molecular Crystals and Liquid Crystals, 2011, 539, 148-155 (SCI).

[4]. Influences of oxygen exposure on instabilities of perfluoropentacene transistor characteristics with different gate insulators.Progress in Natural science: Materials International, 2011, 21, 12-16 (SCI).

[3]. Diffuser micropump structured with extremely flexible diaphragm of 2-μm-thick polyimide film.Japanese Journal of Applied Physics, 2011, 50, 04DK15(1-5) (SCI).

[2].Characteristics of gamma-ray irradiated pentacene organic thin film field effect transistors.Advanced Materials Research, 2011, 306-307, 185-192 (EI).

[1].60Co gamma-ray irradiation effects on pentacene-based organic thin-film transistors.Materials Science Forum, 2011, 687, 576-579 (EI).

授权专利

[1].段宗范,赵高扬,马介渊,刘东杰.聚甲基丙烯酸甲酯-TiO2杂化材料的制备及微细图形制作,2010.10,中国,专利号:CN101174088.

[2].段宗范,赵振,赵高扬,赵麦群.一种二氧化钛超疏水薄膜的制备方法,中国,专利号:ZL.201410356080.4.

[3].段宗范,魏娟宁,赵高扬.紫外感光镧锶锰氧溶胶及其微细图形化薄膜的制备方法,中国,专利号:ZL.2014103560.

[4].段宗范,李康,何刚.一种以S.S-二氧二苯并噻吩为受电子单元的齐聚噻吩衍生物及其制备方法,中国,专利号:ZL.201810366441.1.

[5].段宗范,李康,何刚.一种以二噻吩并吡咯为给电子中心的齐聚噻吩衍生物及其制备方法,中国,专利号:ZL.201810884253.8.

[6].段宗范,何刚,成庆.分别以苯并二噻吩和吡啶并噻二唑为给受电子单元的齐聚噻吩衍生物,中国,发明专利申请号:2019101725025.

[7].段宗范,成庆,何刚,赵高扬.一种以二噻吩并吡咯为分子中心的给-受-给-受-给型齐聚噻吩衍生物及其制备方法,中国,专利号:2019104629087.

[8].段宗范,梅云,赵园欣,赵高扬.以Si为基底c轴取向生长Bi4Ti2.95Co0.05O12多铁薄膜,中国,发明专利号:ZL2019104600233.

[9].段宗范,卢艳芬,李张圆,赵高扬.一种非晶SiO2陶瓷包覆聚酯纤维吸油材料的制备方法,中国,发明专利申请号:ZL202110110303.9.

[10].段宗范,李张圆,卢艳芬,赵高扬.一种ZrO2@PET纤维油水分离新材料的制备方法,中国,发明专利申请号:ZL202110106034.9.

[11].段宗范,李张圆,卢艳芬,赵高扬.一种超亲水/水下超疏油滤纸的制备方法,中国,发明专利申请号:ZL202110156038.8.

[12].段宗范,李张圆,卢艳芬,赵高扬.一种高密度溶剂油/水分离用ZrO2/滤纸的制备方法,中国,发明专利申请号:ZL202110156028.4.

[13].李婉怡,宋海亮,赵琳,刘炳旭,宋昊阳,王贺仟,方昱,田牧鸽,段宗范.可再生碳纤维超亲水/超疏油材料的制备,中国,发明专利申请号:ZL202110156028.4.

[14段宗范,李冰洁,郭静,成罗娜,王利成,石岩,张瑞阳.氧化铈超亲水/超疏水阵列集雾薄膜及其制备方法,中国发明专利,公开日期2024年7月1日,申请号:202410928057.1

[15].段宗范,李冰洁,成罗娜,王利成,石岩,张瑞阳.四氧化三钴超亲水/超疏水阵列集雾薄膜及其制备方法,中国发明专利,公开日期2024年7月16日,申请号:202410951271.9

[16].段宗范,成罗娜,李冰洁,石岩,王利成,张瑞阳.微图案化超亲水自清洁复合涂层的制备方法,中国发明专利,公开日期2024年7月12日,申请号:202410933781.3

[17].段宗范,石岩,王利成,成罗娜,李冰洁,张瑞阳.CdS纳米棒致密包覆碳布压电光催化材料及其制备方法,中国发明专利,公开2024年7月12日,申请号:2024109371284

[18].段宗范,王利成,石岩,成罗娜,李冰洁,张瑞阳.液下超双疏Ag2S-MoS2@CF油水分离滤膜及其制备方法,中国发明专利,公开2024年7月18日,申请号:202410965817.6

.专著及教材

[1]. <<材料科学与工程基础实验教程>>,参编