谭长生

【来源: | 发布日期:2024-10-11 】

基本情况

姓名:谭长生

职称:副教授/硕导

邮箱:cstan@xaut.edu.cn

学习与工作经历

2008.09—2012.07 西安理工大学,材料科学与工程,学士

2012.09—2018.09 西安交通大学,材料科学与工程,博士(硕博连读)

2018.09—2022.01 西安理工大学,材料科学与工程,讲师

2022.02—至今 西安理工大学,材料科学与工程,副教授

2019/09-2023/03 西安理工大学材料学院博后流动站,博士后

2023/03-至今 西安理工大学与扬州市管件厂有限公司,校企联培博后

研究方向

[1]梯度结构、多尺度结构钛合金构型设计及其电热协同强化新策略;

[2]低成本储氢钛合金成分设计及吸放氢机理研究;

[3]合金钢、钛合金材料表面改性技术及其应用(碳氮共渗、超疏水耐磨);

[4]基于电磁耦合处理的金属材料损伤修复及微裂纹愈合机理

荣誉称号

[1]西安理工大学优秀青年人才(第八批),2023

[2]江苏省科技副总,2023

获奖情况

[1]西安理工大学科研先进个人,2020

[2]西安理工大学师德优秀个人,2022

[3]第三届中国德州高层次人才创新创业大赛,优胜奖,2024

科研情况

[1]国家自然科学基金青年项目,52001253,主持

[2]中国博士后科学基金面上项目,2020M673614XB,主持

[3]陕西省技术创新引导计划,2024ZCYYDP92,主持

[4]陕西省自然科学基金青年项目,2020JQ-618,主持

[5]陕西省教育厅重点科学研究计划项目,21JY028,主持

[6]金属材料国家重点实验室开放基金,20202211,主持

[7]与多家钛企业、研究所及高校建立合作关系,主持多项校企合作课题。

教育教学

[1]独立承担《化学与工程材料》、《材料及热加工工艺》和《模具设计及模具CAD》三门本科课程。

[2]指导本科毕业设计12名,独立指导硕士研究生3名,协助指导硕士研究生4名,协助指导博士研究生1名。

授权发明专利

[1]谭长生,杨涛,张国君等。一种提高亚稳β钛合金双性能结构件强度和塑性的方法,2024.06.25,中国,ZL202310066513.1

[2]谭长生,张国君,林建生。一种高硬度减摩钢丝圈及其制备方法,2024.08.23,中国,ZL2022113370228

[3]谭长生,张国君,林建生。一种合金渗碳钢齿轮高性能快速中温碳氮共渗技术. 2024.09.16,中国,ZL2022114774572.

[4]谭长生,樊伊朵,何家豪等。一种显著提高双组织钛合金强塑性的方法,2023.02.10, 中国,ZL202210027527.8

[5]谭长生,何家豪,樊伊朵等。一种Ti55531合金多尺度片层组织的制备方法,2022.12.09,中国,ZL2022100276444

[6]谭长生,张国君,任帅。一种制备高强Ti55531钛合金梯度组织的方法,2021.10.26,中国,ZL202010018811X

[7]谭长生,张国君,任帅。一种制备高强韧TC21钛合金梯度组织的方法,2021.07.20,中国,ZL2020100188016

发表论文

[1]Changsheng Tan*, Tao Yang, Chaowen Huang, et al. Enhanced strength-ductility synergy in Ti55531 titanium alloys through gradient microstructural design strategy, Materials Science & Engineering A 909 (2024) 146823

[2] Yiduo Fan,Changsheng Tan*1, Chaowen Huan, et al. Strength and ductility improvement of the axial gradient microstructure TC21 titanium alloys manufactured by electropulsing plus step-quenching treatment. Journal of Alloys and Compounds 984 (2024) 173979

[3]Changsheng Tan*, Tao Yang, Jiahao He, et al.Influence of electropulsing treatment and step-quench process on the gradient structure evolution of Ti55531 alloy. Journal of Materials Engineering and Performance,(2024), accepted.

[4] Hang Wang, En Dang, Shibin Jiang, Yiduo Fan,Changsheng Tan*. Corrosion Fatigue Failure Mechanism of Steels for Hydraulic Fracturing Pump Valve Box. Journal of Materials Engineering and Performance,(2024), 1-13

[5] Bowen Wang, Na Yang, Bingheng Lu*,Changsheng Tan*. Thermal evolution and strengthening mechanisms in LPBF CoCrFeMnNi alloy: New insights on correlation between microstructure and mechanics with LAGBs. Materials Science & Engineering A 899 (2024) 146387

[6]李强,樊伊朵,谭长生*,等。飞行保护头盔用TC4护目镜支架的热处理研究。兵器材料科学与工程,(2024),47:154-158

[7]李强,范浩南,谭长生*,等。飞行保护头盔用复合材料结构吸收碰撞能量性能研究。化工新型材料,(2024),1-9

[8]王龙刚,包婷婷,谭长生*,等。形变热处理对TC9钛合金组织及拉伸性能的影响。材料热处理学报,(2024)

[9]Hang Wang,Changsheng Tan*, Juan Zhao*, Lihong Han, Guojun Zhang. Effect of creep stress on the high-temperature tensile stability of TC11 titanium alloy. Journal of Material Science, (2023) 58:5503–55153

[10]Changsheng Tan*, Qiaoyan Sun, Guojun Zhang. Role of microstructure in plastic deformation and crack propagation behaviour of an α/β titanium alloy, Vacuum, 183 (2021) 109848

[11]Zilu Xu, Chaowen Huang*,Changsheng Tan*,et al. Influence of microstructure on cyclic deformation response and micromechanics of Ti-55531 alloy,Materials Science & Engineering A, 803 (2021) 140505

[12]Changsheng Tan, Yiduo Fan, Xuejing Li, Chaowen Huang, Jiahao He, Guojun Zhang. Effect of the Multiscale Lamellar on Mechanical Properties of TC21 Titanium Alloy, Rare Metal Materials and Engineering,(2021), 50: 4410-4417

[13]Changsheng Tan*, Qiaoyan Sun, Guojun Zhang, Yongqing Zhao. Remarkable increase in high-cycle fatigue resistance in a titanium alloy with a fully lamellar microstructure, International Journal of Fatigue 138 (2020) 105724

[14]Changsheng Tan*, Qiaoyan Sun, Guojun Zhang, Yongqing Zhao. High-cycle fatigue of a titanium alloy: the role of microstructure in slip irreversibility and crack initiation, Journal of Materials Science,(2020), 55(3)

[15]Changsheng Tan*, Yiduo Fan, Qiaoyan Sun, Guojun Zhang. Improvement of the Crack Propagation Resistance in an α + β Titanium Alloy with a Trimodal Microstructure, Metals(2020), 10, 1058

[16]Changsheng Tan, Qiaoyan Sun, Lin Xiao, Yongqing Zhao, Jun Sun, Cyclic deformation and microcrack initiation behavior during stress controlled high-cycle fatigue in a titanium alloy, Materials Science and Engineering A, 711C (2018) 212-222

[17]Changsheng Tan, Qiaoyan Sun, Lin Xiao, Yongqing Zhao, Jun Sun, Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in situ SEM experiments, Materials Science and Engineering A, 725C (2018) 33-42

[18]Changsheng Tan, Qiaoyan Sun, Lin Xiao, Yongqing Zhao, Jun Sun. Comparison of fatigue crack initiation behavior in different microstructures of TC21 titanium alloy, MATEC Web of Conferences 165, 04014 (2018)

[19]Changsheng Tan, Qiaoyan Sun, Lin Xiao, Yongqing Zhao, Jun Sun, Slip transmission behavior across α/β interface and strength prediction with a modified rule of mixtures in TC21 titanium alloy, Journal of Alloys and Compounds, 724 (2017) 112-120

[20]Changsheng Tan, Xiangli Li, Qiaoyan Sun, Lin Xiao, Yongqing Zhao, Jun Sun, Effect of α-phase morphology on low-cycle fatigue behavior of TC21 alloy, International Journal of Fatigue. 75 (2015) 1-9