当前位置: 学院首页 > 教师风采 > 能源材料与器件系 > 教授 > 正文

杨蓉

【来源: | 发布日期:2025-09-02 】


基本情况

姓名:杨蓉

出生年月:1972年7月

职称:教授

毕业院校:西安交通大学

E-mail: yangrong@xaut.edu.cn


学习与工作情况

2024.11至2025.05韩国Gyeongsang National University高级研修(国家留学基金委)

2012.09至2013.09美国Georgia Institute of Technology访问交流(国家留学基金委)

2011.02至2012.02韩国Gyeongsang National University博士后(中韩博士后研究人员交流计划)

2010.09至2012.09西安理工大学,材料科学与工程博士后流动站出站

2003.2至2009.3西安交通大学材料科学与工程,博士

1997.9至2000.6西北大学无机化学,硕士

1991.9至1995.7西北大学 材料化学,学士

1995.7至今西安理工大学,教师


研究方向

固态电池;锂硫电池关键材料及器件;钠/钾离子电池关键材料


获奖情况

陕西省科学技术奖二等奖(第二单位)

陕西省创新创业优秀指导教师

校级优秀共产党员;校级优秀教师

校级科研先进个人

校本科教学奖一等奖;校级教学成果奖二等奖;校毕业设计优秀指导教师

校“双百人才”


科研情况

作为项目负责人承担科技部国家国际合作专项、国家自然科学基金面上项目、教育部重点实验室开放基金、陕西省科技厅创新团队、能源陕西实验室科技项目、陕西省科技厅重点研发-工业公关、咸阳市重点研发等。主持中石油集团横向课题及其他横向课题多项。已有1项成果获省部级科技进步一等奖(第二完成单位);先后发表论文七十余篇,申请国家发明专利26项,获准授权17项。


主持的科研项目:

[1]国家国际科技合作专项项目(2015DFR50350)

[2]国家自然科学基金(52571179)

[3]能源陕西实验室科技项目(ESL B/202423)

[4]陕西省科技厅一般项目-工业领域(2024GX-YBXM-336)

[5]西安市科技局高校院所人才服务企业项目(23GXFW0052)

[6]陕西省科技厅重点研发计划(2021GY-151)

[7]咸阳市科技局重点研发计划(2021ZDYF-GY-0029)

[8]陕西省创新能力支撑计划-创新人才推进计划-科技创新团队(2019TD-019)

[9]陕西省科技厅重点研发计划(2017GY-160)

[10]国家电网集团:电动汽车智能充放电与电网互动协调关键技术研究

[11]中石油集团渤海钻探有限公司:固井化学堵漏剂及堵漏技术的研究与应用

[12]企业联合:改善锂电池正极材料硅酸亚铁锂大电流充放电性能的研究

近期代表性论文(通讯作者)

[1] Multifunctional integrated separator based on electrospinning structure engineering for high-stability lithium sulfur batteries. Chemical Engineering Journal. 2025, 166813.

[2]Engineering a Semi-Immobilized Ionic Liquid Interface Layer to Boost Li⁺ Conduction at Organic-Inorganic Interface. Applied Surface Science. 2025, 713, 164342.

[3]Bilateral molecular bond- bridging organic-inorganic interfaces for enhanced lithium ion transport in composite solid-state electrolytes. Journal of Power Sources. 2025,655,237952.

[4] Boosting Polysulfides Conversion with Fe3O4-Loaded Carbon Derived from Willow Sawdust for High Sulfur Loading and Lean Electrolyte Lithium Sulfur Batteries. Journal of Power Sources. Journal of Power Sources. 2025, 650, 237500.

[5] Ultra-stable all-solid-state lithium metal batteries facilitated by in-situ LiF-rich single-ion conductor composite polymer electrolytes. Chemical Engineering Journal. 2025, 162820.

[6] Composite solid electrolytes with cation assisted effect to enhance the electrochemical performance of all solid-state lithium metal batteries. Ceramics International. 2025, 51(10), 12738-12747.

[7] FeOOH Nanorod-Assisted Carbon Cloth Sandwich Cathodes for Lithium-Sulfur Batteries. ACS Applied Nano Materials. 2025, 8(7), 3487-3496.

[8] Synergistic Interaction of Strongly Polar Zinc Selenide and Highly Conductive Carbon Nanoframeworks Accelerates Redox Kinetics of Polysulfides. ACS Applied Materials & Interfaces. 2024, 16(44), 60356-60365.

[9] Building TiO2-Ti3C2Txheterojunction by microwave-assisted hydrothermal as an amphiphilic nanoreactor for high-performance lithium sulfur batteries. Materials Today Physics. 2024, 48, 101571.

[11] Bimetallic NiCo@C with a Hollow Sea Urchin Structure Enables Li-S Batteries to Hasten the Reaction Kinetics and Effectively Inhibit the Shuttling of Polysulfides. Inorganic Chemistry. 2024, 63(42), 19835-19846.

[12] Mediation of the electrochemical polarization for durable zinc anode. Journal of Materials Chemistry A. 2024, 12, 26568–26577.

[13] Self-support interlayer of dual-intercalation MXene for accelerating polysufides conversion in lithium-sulfur batteries. Journal of Alloys and Compounds, 2024, 979, 173478.

[14] Cubic CoSe2@carbon as polysulfides adsorption-catalytic mediator for fast redox kinetics and advanced stability lithium-sulfur batteries. Journal of Colloid and Interface Science. 2024,660, 246-256.

[15] In-situ coupling construction of interface bridge to enhance electrochemical stability of all solid-state lithium metal batteries. Journal of Energy Chemistry. 2024, 89, 18-26.

[16] Homogenous conduction: Stable multifunctional gel polymer electrolyte for lithium-sulfur batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024, 680, 132732.

[17]功能化MXene在锂硫电池中应用研究进展.材料导报. 2024, 38(12), 22100251.

[18] NC-Co3O4Polyhedron Embedded Multifunctional Separator Based on Structural Engineering Towards Stable and Durable Lithium-sulfur Battery. Journal of Alloys and Compounds. 2023, 968, 171969.

[19] Graphene quantum dots as sulfiphilic and lithiophilic mediator toward high stability and durable life lithium-sulfur batteries. Journal of Energy Chemistry. 2023, 85, 254–266.

[20] Advances in the density functional theory (DFT) calculation of lithium-sulfur battery cathodes. Materials Today Communications. 2023, 36, 106814.

[21] Interfacial mechanochemical reaction synthesizes alkynyl porous carbon to firm cyclic lithium-sulfur batteries. Journal of Electroanalytical Chemistry. 2023, 934, 117309.

[22] Eucommia leaf residue-derived hierarchical porous carbon by KCl and CaCl2Co-auxiliary activation for lithium sulfur batteries. Materials Characterization. 2023, 195, 112522.

[23]双金属MOFs及其衍生物在电化学储能领域中的应用.化学进展.2022,34(2) : 460-473.

[24] A stabilized polyacrylonitrile-encapsulated matrix on a nanolayered vanadium-based cathode material facilitating the K-storage performance. ACS Applied Materials & Interfaces. 2022, 14: 14243-14252.

[25] Hierarchical multi-channels conductive framework constructed with rGO modified natural biochar for high sulfur areal loading self-supporting cathode of lithium-sulfur batteries. Chemical Engineering Journal Advances. 2022, 9, 100209.

[26] Self-formed carbon layer on calcium Metal-organic framework and rGO composite with High-stable K-storage performance in K-ion batteries. Applied Surface Science, 2022, 571, 151387.

[27] Lightweight freestanding hollow carbon fiber interlayer for high performance lithium-sulfur batteries. International Journal of Energy Research. 2022,46(4), 5296-5305.

[28]锂硫电池电纺非电极材料改性的进展.电池.2022,52(6),703-707.

[29] Metal–organic framework derived Fe3O4/C/rGO composite as an anode material in lithium‑ion batteries. Ionics. 2021, 27(8):3281-3289.

[30]二维金属有机框架材料的制备及其应用.化工进展. 2021, 40(11),6195-6210.


已授权国家发明专利:(本人第一)

[1]一种铁基生物质碳复合隔膜及其制备方法和基于其的锂硫电池;专利号:ZL 2022 1 0080962.7

[2]一种自支撑电极及其制备方法及一种锂硫电池;专利号:ZL 202111605024.6

[3]锂硫电池自支撑电极MOFs@碳纸复合材料的制备方法及应用;专利号:ZL 202110193698.3

[4]一种锂硫电池用自支撑结构的隔膜及其制备方法;专利号:ZL 202110328179.3

[5]一种电化学法制备石墨烯量子点溶液的方法;专利号:ZL 202110296659.6

[6]一种原位硫、氮共掺杂生物质碳纳米片的制备方法;专利号:ZL 201811210945.0

[7]一种微爆法制备石墨烯量子点的方法;专利号:ZL 201811157734.5

[8]一种利用鱼鳞制备分级多孔碳材料的方法;专利号:ZL 201811209896.9

[9]一种石墨烯/硫正极片的电化学制备方法;专利号:ZL 201810389 083.6

[10]一种用于锂硫电池的无粘结剂正极片制备方法;专利号:ZL 201810389109.7

[11]一种利用头发基制备分级多孔碳材料的方法;专利号:ZL 201811209884.6

[12]微波法制备N,S共掺杂石墨烯锂硫电池正极材料的方法;专利号:ZL 2016 10079713.0

[13]微波液相法制备掺杂石墨烯锂硫电池正极材料的方法;专利号:ZL 20161 0079316.3

[14]一种含有添加剂Co3O4的锂硫电池正极材料及制备方法;专利号:ZL 20161 0079319.7

[15]一种含有添加剂MgxNi(1-x)O的锂硫电池正极材料及制备方法;专利号:ZL 201610079714.5

[16]类石墨烯掺杂锂离子电池硅酸铁锂复合正极材料制备方法;专利号:ZL 2014 1 0136971.9

[17]一种类石墨烯结构的导电碳材料的制备方法;专利号:ZL 2014 1 0134804.0